dates; however, practical deployment requires £ty < 0 to offset
latency, which drastically degrades quality. Consistent with prior
work, training on well-composed datasets is insufficient, since such
datasets rarely contain errors, corrective maneuvers, or co-adaptive
behavior. These results motivate developing training objectives that
explicitly encode anticipation and coordination, laying a foundation
for future research on real-time audio accompaniment models.

7. REFERENCES

[1] Peter Keller, “Joint action in music performance,” in Enact-
ing Intersubjectivity: A Cognitive and Social Perspective to the
Study of Interactions. 2008.

[2] William J Wrigley and Stephen B Emmerson, “The experience
of the flow state in live music performance,” Psychology of
Music, 2013.

[3] Wiebke Trost, Caitlyn Trevor, Natalia Fernandez, et al., “Live
music stimulates the affective brain and emotionally entrains
listeners in real time,” Proceedings of the National Academy
of Sciences, 2024.

[4] Julian D Parker, Janne Spijkervet, Katerina Kosta, et al.,
“Stemgen: A music generation model that listens,” in /ICASSP.

IEEE, 2024.
[5] Chris Donahue, Antoine Caillon, Adam Roberts, et al.,
“Singsong: Generating musical accompaniments from

singing,” ArXiv, 2023.
[6] Simon Rouard, Robin San Roman, Yossi Adi, et al.,

“Musicgen-stem: Multi-stem music generation and edition
through autoregressive modeling,” in ICASSP, 2025.

[7]1 Yusong Wu, Tim Cooijmans, Kyle Kastner, et al., “Adaptive
accompaniment with realchords,” in ICML, 2024.

[8] Christodoulos Benetatos, Joseph VanderStel, and Zhiyao
Duan, “Bachduet: A deep learning system for human-machine
counterpoint improvisation,” in NIME, 2020.

[9] Zihao Wang, Kejun Zhang, Yuxing Wang, et al., “Songdriver:
Real-time music accompaniment generation without logical la-
tency nor exposure bias,” in ACM MM, 2022.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al., “Attention
is all you need,” NeurlPS, 2017.

[11] Ethan Manilow, Gordon Wichern, Prem Seetharaman, et al.,
“Cutting music source separation some slakh: A dataset to
study the impact of training data quality and quantity,” in WAS-
PAA. IEEE, 2019.

[12] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, et al.,
“High-fidelity audio compression with improved rvqgan,”
NeurIPS, 2023.

[13] Roger B Dannenberg, “An on-line algorithm for real-time ac-
companiment,” in ICMC, 1984.

[14] Christopher Raphael, “Music plus one and machine learning.,”
in ICML, 2010.

[15] Arshia Cont, “Antescofo: Anticipatory synchronization and
control of interactive parameters in computer music.,” in
ICMC, 2008.

[16] George E Lewis, “Too many notes: Computers, complexity,
and culture in voyager,” in New Media. Routledge, 2003.

[17] Gérard Assayag, Georges Bloch, Marc Chemillier, et al.,
“Omax brothers: a dynamic yopology of agents for improviza-
tion learning,” in ACM workshop on Audio and music comput-
ing multimedia, 2006.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

Jérdme Nika and Marc Chemillier, “Improtek: integrating har-
monic controls into improvisation in the filiation of omax,” in
ICMC, 2012.

Jérdme Nika, Marc Chemillier, and Gérard Assayag, “Impro-
tek: introducing scenarios into human-computer music impro-
visation,” Computers in Entertainment (CIE), 2017.

Nan Jiang, Sheng Jin, Zhiyao Duan, et al., “RL-duet: On-
line music accompaniment generation using deep reinforce-
ment learning,” in AAAI, 2020.

Alexander Scarlatos, Yusong Wu, Ian Simon, et al., “Real-
jam: Real-time human-ai music jamming with reinforcement
learning-tuned transformers,” in CHI EA, 2025.

Lyria Team, Antoine Caillon, Brian McWilliams, et al., “Live
music models,” ArXiv, 2025.

O. J. M. Smith, “A controller to overcome dead time,” ISA
Journal, 1959.

Maximilian Schwenzer, Muzaffer Ay, Thomas Bergs, et al.,
“Review on model predictive control: an engineering perspec-
tive,” The International Journal of Advanced Manufacturing
Technology, 2021.

Kevin Black, Manuel Y Galliker, and Sergey Levine, ‘“Real-
time execution of action chunking flow policies,” ArXiv, 2025.

Ke Chen, Yusong Wu, Haohe Liu, et al., “Musicldm: Enhanc-
ing novelty in text-to-music generation using beat-synchronous
mixup strategies,” in ICASSP. IEEE, 2024.

Hugo Flores Garcia, Prem Seetharaman, Rithesh Kumar, et al.,
“Vampnet: Music generation via masked acoustic token mod-
eling,” arXiv preprint arXiv:2307.04686, 2023.

John Thickstun, David Leo Wright Hall, Chris Donahue, and
Percy Liang, “Anticipatory music transformer,” Transactions
on Machine Learning Research, 2024.

MIDI Manufacturers Association, “Complete MIDI 1.0 de-
tailed specification,” http://www.midi.org/techspecs/gm.php,
1999, Updated 2008.

Shih-Lun Wu, Aakash Lahoti, Arjun D Desai, et al., “Towards
codec-LM co-design for neural codec language models,” in
NAACL SRW, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al.,
“The llama 3 herd of models,” ArXiv, 2024.

Jade Copet, Felix Kreuk, Itai Gat, et al., “Simple and control-
lable music generation,” NeurlPS, 2024.

Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in /CLR, 2015.

Priya Goyal, Piotr Dolldr, Ross Girshick, et al., “Accurate,
large minibatch sgd: Training imagenet in 1 hour,” ArXiv,
2017.

Ilya Loshchilov and Frank Hutter, “Sgdr: Stochastic gradient
descent with warm restarts,” in /CLR, 2017.

Ruben Ciranni, Giorgio Mariani, Michele Mancusi, et al., “Co-
cola: Coherence-oriented contrastive learning of musical audio
representations,” in JCASSP. IEEE, 2025.

Francesco Foscarin, Jan Schliiter, and Gerhard Widmer, “Beat
this! accurate beat tracking without dbn postprocessing,” in
ISMIR, 2024.

http://www.midi.org/techspecs/gm.php

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Sebastian Bock, Filip Korzeniowski, Jan Schliiter, et al., “mad-
mom: a new Python Audio and Music Signal Processing Li-
brary,” in ACM MM, 2016.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, et al.,
“Fr\’echet audio distance: A metric for evaluating music en-
hancement algorithms,” ArXiv, 2018.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang,
and Tie-Yan Liu, “On layer normalization in the transformer
architecture,” in Proceedings of the 37th International Confer-
ence on Machine Learning, 2020, arXiv:2002.04745.

Biao Zhang and Rico Sennrich, “Root mean square layer nor-
malization,” arXiv preprint arXiv:1910.07467, 2019.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen,
Xiaodong Han, Yunshen Wei, Baohong Lv, Xiao Luo, Yu Qiao,
and Yiran Zhong, “Transnormerllm: A faster and better large
language model with improved transnormer,” arXiv preprint
arXiv:2307.14995, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen,
and Yunfeng Liu, “Roformer: Enhanced transformer with ro-
tary position embedding,” arXiv preprint arXiv:2104.09864,
2021.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and
Yuxuan Chen, “Query-key normalization for transformers,”
in Findings of the Association for Computational Linguistics:
EMNLP 2020, 2020, arXiv:2010.04245.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner,
Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag
Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan
Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste,
Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu, Avi-
tal Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Col-
lier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vascon-
celos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip
Paveti’c, Dustin Tran, Thomas Kipf, Mario Luci’c, Xiaohua
Zhai, Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby,
“Scaling vision transformers to 22 billion parameters,” arXiv
preprint arXiv:2302.05442, 2023.

Noam Shazeer, “Glu variants improve transformer,” arXiv
preprint arXiv:2002.05202, 2020.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai, “Gqa:
Training generalized multi-query transformer models from
multi-head checkpoints,” in Proceedings of EMNLP 2023,
2023, arXiv:2305.13245.

66 Ground Truth
664 Ground Truth * @ Offline Prefix Decoder
@ _) 64 @ Offline StemGen
641 [] Ofﬂ!ne Prefix Decoder — ——- Random Pairing
-~ @ Offline StemGen < 62
- - — —e— Normal Input
Z 62 —=- Random Pairing o —«~ Random Input
<4 L Prompt 0s S 60 P
S 604 Prompt 1s w0
0 —e— Prompt 2s < 58
I s8 —e— Prompt 4s 8
8 564 —e— Prompt 6s 8 56
8 —e— Prompt 8s
54 Generate Ahead 54 Generate Ahead
_____________________________________ Generate Behind Generate Behind
52 52
-4.0 20 -1.0 00 10 20 40 = -4.0 20 -1.0 00 1.0 20 40
Future Visibility (seconds) Future Visibility (seconds)
(a) COCOLA Score Across Prompt Length (b) COCOLA Score Compared with Random Input

Fig. 5. Accompaniment performance for streaming models with & = 1 evaluated across different future visibility ¢ ;. Left: performance under
different prompt length. Right: performance when conditioning on the paired input compared with conditioning on a random input.

701

__ o e s T T SR S P e
66 7
68 4
T 64 o °
g ® g 66 1
2 624 %
o 64 4
g
© 60 4
T & 621
o ©
O 58+ °
3 8 601
© 561 Generate Ahead O Generate Ahead
Generate Behind 53 Generate Behind
o e e e P P e ey o [ANVUNY [UNUNOUIORNOIO UV MNP 0000 00 S ISR el
- - 56 1— -
-4.0 20 -10 00 1.0 20 4.0) -4.0 20 -10 00 1.0 20 4.0)
Future Visibility (seconds) Future Visibility (seconds)
—e— Online Decoders ¢ Offline StemGen Ground Truth —e— Online Decoders ¢ Offline StemGen Ground Truth
--- Random Pairing @ Offline Prefix Decoder --- Random Pairing ® Offline Prefix Decoder
(a) COCOLA Harmonic (b) COCOLA Percussive

Fig. 6. COCOLA harmonic score and COCOLA percussive score of generated accompaniment for streaming models with £ = 1 across
different ¢ .

A. APPENDIX
A.1. Acknowledgment

We would like to thank Ke Chen for the discussion on this project.

A.2. Additional Results

We further investigate how each model configuration attends to the input and output. We run streamed generation while pairing each target
stem with a randomly chosen input from the test set, and we compare COCOLA against the true paired input. As shown in Fig. 5b, the scores
with true and random inputs are almost indistinguishable when ¢y < 2, which indicates that the decoder relies mainly on its own history and
the instrument token under low or negative visibility. For small positive ¢, the gap increases, which implies that the model begins to exploit
the input stream for both harmonic and rhythmic cues. This is consistent with the main results where coherence and beat alignment improve
as lookahead increases. We warm start decoding by providing a ground truth prefix of both input and output with duration L seconds, then
start streaming. Fig. 5a shows that gains from prompting are largest when ¢y < 0, and decrease as ¢ty grows. This suggests that, in low
future-visibility regimes, a short history reduces exposure bias and stabilizes local decisions, whereas with more lookahead the model already
observes sufficient recent context and benefits less from a longer prefix.

We include the COCOLA harmonic score and COCOLA percussive score of generated accompaniment for streaming models with £ = 1
across different ¢ in Fig. 6. For streaming models with combinations of £ > 1 and ¢, we include COCOLA harmonic score and COCOLA
percussive score in Fig. 7, and beat alignment and FAD score in Fig. 8.

704
23 Ground Truth L 4 Ground Truth
o 661 ® Offline Prefix Decoder 0 cs] @ Offline Prefix Decoder
S @ Offline StemGen S @ Offline StemGen
A 64 ° - v} ° -
o ——- Random Pairing w 66 ——- Random Pairing
C 62 Chunk Size 0.04s ; Chunk Size 0.04s
g Chunk Size 0.1s 4 641 Chunk Size 0.1s
© 60 —e— Chunk Size 0.2s I~ —e— Chunk Size 0.2s
T —e— Chunk Size 1.0s ﬂq—.J 62 —e— Chunk Size 1.0s
g 584 —o— Chunk Size 2.0s g 60 —e— Chunk Size 2.0s
3 601
8 561 3
(&) Generate Ahead O 584 Generate Ahead
o Generate Behind | _] Generate Behind
2.0 10 0.0 10 20 w * 0 10 0.0 10 20 w
Future Visibility (seconds) Future Visibility (seconds)
(a) COCOLA Harmonic (b) COCOLA Percussive

Fig. 7. COCOLA harmonic score and COCOLA percussive score of generated accompaniment for streaming models with combinations of
k> 1andty.

L4 Ground Truth @ Offline Prefix Decoder
g @ Offline Prefix Decoder T 61 @ Offline StemGen
% 0.5 @ Offline StemGen g Chunk Size 0.04s
g ——- Random Pairing < Chunk Size 0.1s
L o4l Chunk Size 0.04s 251 —e— Chunk Size 0.2s
= ' Chunk Size 0.1s g —e— Chunk Size 1.0s
g —e— Chunk Size 0.2s o 41 —e— Chunk Size 2.0s
c 0.3 —e— Chunk Size 1.0s \é
= —e— Chunk Size 2.0s s % °
<< O
= ? 3
0.2 Generate Ahead 2 Generate Ahead
m o
Generate Behind 2] Generate Behind
2.0 10 0.0 10 20 w 2.0 10 0.0 10 20
Future Visibility (seconds) Future Visibility (seconds)
(a) Beat Alignment (b) COCOLA Percussive

Fig. 8. Beat alignment and FAD score of generated accompaniment for streaming models with combinations of ¥ > 1 and ¢;.

A.3. Dataset Details

When selecting input-output track pairs and a start time for each 10s window, we filter by silence and instrument class. We compute A-
weighted short-time RMS at 50 Hz and label frames with level below —60 dB as silent. We then reject a window if the input mixture and the
target stem do not have at least 50% overlap of non-silent frames. When choosing the target stem, we exclude vocal classes.

A.4. Transformer Backbone

We use a transformer backbone similar to Llama 3. Following current large-model practice, the network uses pre layer normalization through-
out [40], with Root Mean Square Normalization as the normalization operator [41]; we adopt the simplified RMSNorm variant reported to
work well at large scale [42]. Positional information is injected by rotary position embedding in self-attention [43]. Inside attention, we apply
query-key normalization by normalizing queries and keys along the head dimension before the similarity computation [44], together with a
dimension-dependent scaling factor on the normalized scores as recommended by recent scaling results [45]. The feed-forward sublayers use
the gated SwiGLU activation [46]. To improve decoding efficiency while preserving quality, key-value projections are shared across groups
of query heads, i.e., grouped-query attention [47]. The decoder also supports cross-attention for conditioning on external context.

A.5. Model Implementation Details

For all prefix-decoder models, we do not use a bidirectional mask on the prefix. Instead, we apply a single causal mask over the entire
sequence so that every position attends only to past positions.

For the StemGen masked language model, we found a VampNet-style [27] confidence ranking to outperform the original StemGen
ranking. At each sampling iteration and for each RVQ level, we compute a confidence score for token g as

conf(g:) = logp(g:) + temp - g, O]
where p(7:) is the model probability of g, g: ~ Gumbel(0, 1) is i.i.d., and temp is linearly annealed to 0 over the sampling iterations.

A.6. Streaming Prefix Decoder Details

In the streaming setting with chunk size £ > 1, we train a prefix decoder. For each minibatch, we sample a prefix length ¢ uniformly from
{0, k, 2k, ..., T — k}. Given £, we construct each example by aligning inputs and outputs up to step ¢, then require the model to predict the

next k steps (¢ + 1, ..., £ + k) under a causal attention mask. The loss is computed only on these k target steps, and gradients are applied
exclusively to those positions, while earlier tokens serve as context without direct supervision. This variable-prefix sampling exposes the
model to a range of prefix boundaries and supports chunked next-k prediction during streaming inference.

A.7. Model Sampling Details

For all decoder-only Transformers, we sample with softmax temperature 1.0 and top-k = 200. For the StemGen model, we use per-level
maximum noise temperatures [8.0, 8.0, 4.0, 4.0] for RVQlevels £ = 1,...,4, and [128, 64, 32, 32] sampling steps per level. The StemGen
model is trained with input dropout probability 20% (the input embedding is zeroed when dropped). At sampling time we use classifier-free
guidance with scale 2.0.

For online streaming models, the total input it ever conditioned on is ty + T". That is, if t; > 0, the model see extra input stream, and
vice versa.

A.8. Listening Study Details

We ran a listening study in which 24 participants evaluated the models in this study as well as ground truth and random pairing examples.
Participants blindly evaluated the models by indicating their preference between pairs of accompaniments for a given input. A Kruskal-Wallis
H test and confirmed that there are statistically significant pairs among the permutations. We evaluate significance with a post-hoc analysis
using the Wilcoxon signed-rank test with Bonferroni correction (with pj0.05/21 as there are 7 models evaluated).

To ease the participant’s cognitive load, we select samples with six or fewer input tracks for inclusion in the listening test.

Ground Truth ~ Offline StemGen Offline Prefix Decoder ty =1 t; =0 t;=—1 Random Pairing

Ground Truth N/A ! * * *
Offline StemGen N/A ! ! !
Offline Prefix Decoder N/A ! !
tr=1

ty = 0

tr =-—1
Random Pairing

P

*
*k
!
!
!
!

* K% X X X -

- % o= =
*
*

- Z
>

!
!
!
%
*k

N/A

Table 1. Pairwise statistical significance results for listening study. * indicates significant difference (p < 0.05/21), ! indicates non-
significant (p > 0.05/21).

A.9. Audio Mixing

For all objective evaluations and the listening study, we use a fixed loudness pipeline. First, we loudness-normalize the predicted track and
the target track to —18 dB. When forming the mix, all tracks in the input mixture are summed at equal loudness, and the predicted (or target)
track is mixed 45 dB relative to each input track. Finally, we normalize the resulting mixture to —18 dB.

	 Introduction
	 Related Work
	 Streaming Accompaniment Models
	 Problem setup
	 Future Visibility
	 Output Chunk Duration
	 Practical System Design
	 Connecting to Offline Models in Unified Design Space

	 Experiment Setup
	 Dataset and Audio Representation
	 Model Architecture
	 Model Training and Offline Baseline
	 Evaluation

	 Results
	 Conclusions and Future Implications
	 References
	 Appendix
	 Acknowledgment
	 Additional Results
	 Dataset Details
	 Transformer Backbone
	 Model Implementation Details
	 Streaming Prefix Decoder Details
	 Model Sampling Details
	 Listening Study Details
	 Audio Mixing

