dates; however, practical deployment requires £ty < 0 to offset
latency, which drastically degrades quality. Consistent with prior
work, training on well-composed datasets is insufficient, since such
datasets rarely contain errors, corrective maneuvers, or co-adaptive
behavior. These results motivate developing training objectives that
explicitly encode anticipation and coordination, laying a foundation
for future research on real-time audio accompaniment models.
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A.2. Additional Results

We further investigate how each model configuration attends to the input and output. We run streamed generation while pairing each target
stem with a randomly chosen input from the test set, and we compare COCOLA against the true paired input. As shown in Fig. 5b, the scores
with true and random inputs are almost indistinguishable when ¢y < 2, which indicates that the decoder relies mainly on its own history and
the instrument token under low or negative visibility. For small positive ¢, the gap increases, which implies that the model begins to exploit
the input stream for both harmonic and rhythmic cues. This is consistent with the main results where coherence and beat alignment improve
as lookahead increases. We warm start decoding by providing a ground truth prefix of both input and output with duration L seconds, then
start streaming. Fig. 5a shows that gains from prompting are largest when ¢y < 0, and decrease as ¢ty grows. This suggests that, in low
future-visibility regimes, a short history reduces exposure bias and stabilizes local decisions, whereas with more lookahead the model already
observes sufficient recent context and benefits less from a longer prefix.

We include the COCOLA harmonic score and COCOLA percussive score of generated accompaniment for streaming models with £ = 1
across different ¢ in Fig. 6. For streaming models with combinations of £ > 1 and ¢, we include COCOLA harmonic score and COCOLA
percussive score in Fig. 7, and beat alignment and FAD score in Fig. 8.
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A.3. Dataset Details

When selecting input-output track pairs and a start time for each 10s window, we filter by silence and instrument class. We compute A-
weighted short-time RMS at 50 Hz and label frames with level below —60 dB as silent. We then reject a window if the input mixture and the
target stem do not have at least 50% overlap of non-silent frames. When choosing the target stem, we exclude vocal classes.

A.4. Transformer Backbone

We use a transformer backbone similar to Llama 3. Following current large-model practice, the network uses pre layer normalization through-
out [40], with Root Mean Square Normalization as the normalization operator [41]; we adopt the simplified RMSNorm variant reported to
work well at large scale [42]. Positional information is injected by rotary position embedding in self-attention [43]. Inside attention, we apply
query-key normalization by normalizing queries and keys along the head dimension before the similarity computation [44], together with a
dimension-dependent scaling factor on the normalized scores as recommended by recent scaling results [45]. The feed-forward sublayers use
the gated SwiGLU activation [46]. To improve decoding efficiency while preserving quality, key-value projections are shared across groups
of query heads, i.e., grouped-query attention [47]. The decoder also supports cross-attention for conditioning on external context.

A.5. Model Implementation Details

For all prefix-decoder models, we do not use a bidirectional mask on the prefix. Instead, we apply a single causal mask over the entire
sequence so that every position attends only to past positions.

For the StemGen masked language model, we found a VampNet-style [27] confidence ranking to outperform the original StemGen
ranking. At each sampling iteration and for each RVQ level, we compute a confidence score for token g as

conf(g:) = logp(g:) + temp - g, O]
where p(7:) is the model probability of g, g: ~ Gumbel(0, 1) is i.i.d., and temp is linearly annealed to 0 over the sampling iterations.

A.6. Streaming Prefix Decoder Details

In the streaming setting with chunk size £ > 1, we train a prefix decoder. For each minibatch, we sample a prefix length ¢ uniformly from
{0, k, 2k, ..., T — k}. Given £, we construct each example by aligning inputs and outputs up to step ¢, then require the model to predict the



next k steps (¢ + 1, ..., £ + k) under a causal attention mask. The loss is computed only on these k target steps, and gradients are applied
exclusively to those positions, while earlier tokens serve as context without direct supervision. This variable-prefix sampling exposes the
model to a range of prefix boundaries and supports chunked next-k prediction during streaming inference.

A.7. Model Sampling Details

For all decoder-only Transformers, we sample with softmax temperature 1.0 and top-k = 200. For the StemGen model, we use per-level
maximum noise temperatures [8.0, 8.0, 4.0, 4.0] for RVQlevels £ = 1,...,4, and [128, 64, 32, 32] sampling steps per level. The StemGen
model is trained with input dropout probability 20% (the input embedding is zeroed when dropped). At sampling time we use classifier-free
guidance with scale 2.0.

For online streaming models, the total input it ever conditioned on is ty + T". That is, if t; > 0, the model see extra input stream, and
vice versa.

A.8. Listening Study Details

We ran a listening study in which 24 participants evaluated the models in this study as well as ground truth and random pairing examples.
Participants blindly evaluated the models by indicating their preference between pairs of accompaniments for a given input. A Kruskal-Wallis
H test and confirmed that there are statistically significant pairs among the permutations. We evaluate significance with a post-hoc analysis
using the Wilcoxon signed-rank test with Bonferroni correction (with pj0.05/21 as there are 7 models evaluated).

To ease the participant’s cognitive load, we select samples with six or fewer input tracks for inclusion in the listening test.

Ground Truth ~ Offline StemGen  Offline Prefix Decoder ty =1 t; =0 t;=—1 Random Pairing

Ground Truth N/A ! * * *
Offline StemGen N/A ! ! !
Offline Prefix Decoder N/A ! !
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!
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!
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Table 1. Pairwise statistical significance results for listening study. * indicates significant difference (p < 0.05/21), ! indicates non-
significant (p > 0.05/21).

A.9. Audio Mixing

For all objective evaluations and the listening study, we use a fixed loudness pipeline. First, we loudness-normalize the predicted track and
the target track to —18 dB. When forming the mix, all tracks in the input mixture are summed at equal loudness, and the predicted (or target)
track is mixed 45 dB relative to each input track. Finally, we normalize the resulting mixture to —18 dB.
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